

Unix Lab

SECTION 1 UNIX LAB
Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 6
1.2 History of UNIX 7
1.3 Features of UNIX 8
1.4 Kernel and the Shell 9

1.4.1 Commands and Processes
1.4.2 UNIX File System
1.4.3 Wild Card Characters
1.4.4 Syntax of UNIX Commands
1.4.5 Getting Help

1.5 UNIX Commands 11
1.6 Description of Commonly Used UNIX Commands 14
1.7 Introduction to Shell Programming 21
 1.7.1 History of UNIX Shells
 1.7.2 Deciding on a Shell
 1.7.3 Shell Command Files
1.8 Bourne Shell Programming 24
1.9 Practical Sessions 35
1.10 Summary 39
1.11 Further Readings 39
1.12 Website References 40

1.0 INTRODUCTION

You have studied MCS-041, a theoretical course on Operating Systems. In that
course we had gone through the features of an OS, different functions of OS and their
management. Also, we had touched upon the case studies of two operating systems:
namely, WINDOWS 2000 and LINUX. This is the lab component associated with the
MCS-041 course. In this section 1 you will be provided the hands on experience on
UNIX/LINUX operating system.

UNIX is a computer operating system, a system program that works with users to run
programs, manage resources and communicate with other computer systems. UNIX
is a multiuser operating system. Its commands are similar to spoken language,
commands acting as verbs, command options acting as adjectives and the more
complex commands acting akin to sentences. It is a multitasking operating system in
which a user can run more than one program or task at a time. UNIX is a layered
operating system. The innermost layer is the hardware that provides the services for
the OS. The operating system, referred to in UNIX as the kernel, interacts directly
with the hardware and provides the services to the user programs. User programs
interact with the kernel through a set of standard system calls. These system calls
request services to be provided by the kernel. Such services would include accessing
a file: open close, read, write, link, or execute a file; starting or updating accounting
records; changing ownership of a file or directory; changing to a new directory;
creating, suspending, or killing a process; enabling access to hardware devices; and
setting limits on system resources.

By now, you must have obtained the practical skills of LINUX. Refer the course
material of MCS-022, Block-2 Linux Operating System for information and help on
LINUX. Also refer the lab manual of MCSL-025, Section-2 Operating Systems and
Networking Lab. Hope you have done all the exercises given in the practical sessions
of this and preserved the lab manual also for further reference.

If you have versions of UNIX at your study centre, you should execute all the
sessions given at the end of this Section using UNIX. Or else, you may use the Linux.
Operating System for solving them. Try to execute all the example commands/shell
scripts/shell programs along with the problems given at the end of this section

5

Lab Manual

(session wise). Use the online reference manual provided by the man command of
UNIX to the possible extent to know all the underlying options of the commands.

In order to successfully complete this section, the learner should adhere to the
following general guidelines:

• The student should attempt all exercises / problems / assignments given in the
list, session wise.

• You may seek assistance in doing the lab exercises from the concerned lab
instructor. Since the assignments have credits, the lab instructor is obviously
not expected to tell you how to solve these, but you may ask questions
concerning the technical problems you are encountering during the sessions.

• For each program you should add comments as far as possible.

• The program should be interactive, general and properly documented with real
Input/ Output data.

• You are strongly advised not to copy somebody else’s work.

• It is your responsibility to create a separate directory to store all the programs,
so that nobody else can read or copy.

• Observation book and Lab record are compulsory.

• The list of the exercises (session-wise) is available to you in this lab manual.
For each session, you must come prepare with the necessary commands,
algorithms / programs and necessary documentation written in the Observation
Book. You should utilise the lab hours for executing the programs, testing for
various desired outputs and enhancements of the programs.

• As soon as you have finished a lab exercise, contact one of the lab
instructor / Incharge in order to get the exercise successfully completed by you
for evaluation and also get the signature from him/her on your Observation
book against them.

• Completed lab assignments should be submitted in the form of a Lab Record in
which you have to write the commands / algorithm / program code along with
comments and output for various inputs given.

• For this UNIX lab, the total no. of lab sessions (3 hours each) are 10 and the list
of assignments is provided session-wise. It is important to observe the deadline
given for each assignment.

1.1 OBJECTIVES
After going through this section, you should be able to:

• mention the features of UNIX;

• recognize, understand and make use of various UNIX commands;

• gain hands on experience of UNIX commands and shell programs;

• feel more confident about writing the shell scripts and shell programs;

• apply the concepts that have been covered in this manual, and

• know the alternate ways of providing the solutions to the given practical
exercises and problems.

1.2 HISTORY OF UNIX

6

Unix Lab

The tabular form given below shows the developments of UNIX year wise.

Year Developments
1965 Multics project begun as joint venture of AT&T, MIT, and GE to create a

new operating system for the GE computer.
1969 AT&T Bell Labs researchers Ken Thompson, Dennis Ritchie, J. F.

Ossanna, and R. H. Canaday create a prototype file management system as
an alternative to MULTICS.
Commercial systems at the time were written entirely in assembly
language. One of the goals of UNIX is to have a small kernel written in
assembler, and the rest in any high-level language.
Unix also has a hierarchical file system and a collection of utility
programs.

1970 Brian Kernighan coins the name UNICS (UNiplexed Information and
Computing System).
Unix development increases with the acquisition of a DEC (Digital
Equipment Corporation) PDP-11, a state-of-the-art $65,000 computer with
24 kilobytes of RAM and 512 kilobytes of disk space.
Thompson develops B as an alternative to FORTRAN and BCPL.

1971 1st Unix version, V1, used only within Bell Labs.
Needing to justify the cost of development, UNIX is used (with the
assembly-language-coded troff) in the Bell Labs patent department as a
one of the first word-processing programs.
B is improved upon and its successor is named C.

1972 M. D. McIlroy introduces the novel idea of ‘pipes’.
June – Version 2, 10 Unix installations.

1973 Version 3, 16 Unix installations.
November – Version 4 is rewritten in C, easing the portability of Unix.

1974 S. R. Bourne develops the Bourne Shell (/bin/sh, indicated with a '$')
June – Version 5 Estimated 50 Unix installations.

1975 AT&T leases Version 6 to universities at low cost, making UNIX use
widespread.
Thompson spends year at UC Berkeley, leads development of a BSD
variant of Unix.
UC Berkeley graduate student Bill Joy (who later starts Sun Microsystems)
develops the C-shell (/bin/csh, indicated with a '%') and the vi text editor.
TENEX-style C-shell developed (/bin/tcsh).
David Korn from AT&T develops the Korn shell (/bin/ksh).

1976 Emacs originally written by Richard Stallman.
1977 1BSD released.

Tom Duff and Byron Rakitzis develop the rc shell.
1978 Students at UC Berkeley, known as "Berkeley Software Distribution",

develop their own variant of UNIX, called BSD.
2BSD released, 75 copies distributed.
600 Unix installations worldwide.

1979 Private companies begin porting commercial versions of Unix.
BSD releases 3BSD.
AT&T releases the 40KB-kernel Version 7.

1980 Microsoft releases Xenix, which is the first attempt to bring Unix to
desktop computers.
October - BSD releases 4.0 BSD

1982 AT&T releases its first commercial version of Unix, System III.
Ksh was delivered working in 1982 to AT&T Bell labs.

1983 Computer Research Group (CRG), UNIX System Group (USG), and
Programmer's WorkBench (PWB) merge to become UNIX System
Development Lab.
AT&T releases System V, incorporating Xenix and other variants.
BSD releases 4.2BSD which includes complete implementation of TCP/IP
networking protocols, including telnet and ftp.
SVID, the System 5 Interface Definition, is released in an effort to

7

Lab Manual

standardize the UNIX flavors as much as possible.
1984 Estimated 100,000 UNIX installations worldwide.

U.S. government charges AT&T with monopolistic practices and AT&T is
forced to divest its interests.
AT&T releases SVR2, incorporating many features from 4.2BSD
X/Open consortium of vendors founded, eventually known as The Open
Group, gets UNIX trademark.
Richard Stallman develops GNU (GNU's Not UNIX) as a free UNIX
clone.

1985 February - AT&T releases Version 8
Paul Falstad develops zsh.

1986 September - AT&T releases Version 9
DEC, which had been supporting VAX/VMS, is forced to acknowledge
and support UNIX as an inexpensive alternative.
Rc shell upgraded to es.

1987 Estimated 100,000 Unix installations worldwide.
1988 Unix International (UI) and Open Software Foundation (OSF) are formed.

SVR4 releases as a combo of System V, BSD, and SunOS.
1989 October - AT&T releases V10, the final version.

Wanting a free alternative to ksh, GNU advocates develop bash (Bourne-
again shell).

1991 Unix Systems Laboratory (USL) spun off as a separate company, majority-
owned by AT&T.
OSF releases OSF/1.
Linus Torvalds releases Linux kernel (Linus's Minix, pronounced 'lin-ux')

1992 July 14 - William and Lynne Jolitz release 386BSD as open source,
eventually evolving into NetBSD, FreeBSD, and OpenBSD.

1993 4.4BSD released as final Berkely release.
June 16 - Novell buys USL from AT&T.

1994 Torvalds and many others relase version 1.0 of the Linux kernel. Used
with Stallman's GNU command-set, users around the world have access to
a free UNIX variant known as GNU/Linux, or just Linux.

1995 Santa Cruz Operation (SCO) buys USL from Novell
June - 4.4 BSD Lite Release 2 the final distribution.

1996 OSF and X/Open merge to become The Open Group.
1997 The Open Group releases Single UNIX Specification, Version 2.
1998 20 million UNIX installations worldwide.
1999 After years of growing hype about Linux, and Microsoft staunchly

refusing to take part in the open source movement, many companies feel
compelled to choose between developing software for UNIX or for
Windows NT.

Let us study the features of UNIX operating system in the following section.

1.3 FEATURES OF UNIX

The UNIX operating system is a popular Operating system because of its simplicity
in its design and functioning. The following are the key features which made the
UNIX OS very popular:

• Multiuser system
• Time sharing
• Portability
• Multitasking
• Background processing
• Hierarchical file system
• Security and Protection
• Better communication
• Availability of compilers / tools / utilities

8

Unix Lab

• Shell programming.

1.4 KERNEL AND THE SHELL

The main control program in a UNIX operating system is called the kernel.
However, the kernel does not allow the user to give its commands directly; instead
when the user types commands on the keyboard they are read by another program in
the Operating System called a shell which parses, checks, translates and then passes
them to the kernel for execution.

There are a number of different shells available, with names such as sh, csh, tcsh, ksh,
bash, each with different rules of syntax; these are partly though not completely
responsible for the diversity of UNIX. Later in our discussion we will see what are
the criteria to select a shell. Once the command has been interpreted and executed,
the kernel sends its reply, which may simply be a prompt for the next command to
be entered, either directly to the display monitor. This is a program responsible for
deciding where and in what form the output will appear on the display monitor. If for
any reason the kernel cannot perform the command requested (wrong syntax), for
example, the reply will be an error message; the user must then re-enter the corrected
command.

1.4.1 Commands and Processes
The kernel and the shell programs running in the CPU are examples of processes;
these are self-contained programs that may take over complete control of the CPU.
Although there can only be one kernel process running in a particular CPU, there may
be any number of shell and other processes, subject of course to memory limitations.

Some commands to the shell are internal (or built-in), that is, they only involve the
shell and the kernel. Others are external and may be supplied with the OS, or may
be user-written. An external command is the name of a file which contains either a
single executable program or a script. The latter is a text file, the first line of which
contains the name of a file containing an executable program, usually but not
necessarily a shell, followed by a sequence of commands for that program. A script
may also invoke other scripts – including itself. Its purpose is simply to avoid having
to re-type all the command it contains.

A command may also be an alias for an internal or external command (e.g., the user
may not like the UNIX name “rm” for the command which deletes files, and may
prefer to alias it to “delete”).

The external command may optionally cause execution of the shell process to be
temporarily suspended, and then run another program, which may then take over
input from the keyboard and mouse and send output for display. The shell may or
may not wait for the program to finish, before it wakes up again and cause its prompt
to be displayed. It is very important that the user be continuously aware of which
process is currently reading keyboard input: the shell or another program, because
they usually speak completely different languages.

The above is an example of a parent process – the shell, and a child process – the
external program. In fact the child could just as well have been, and often is, another
invocation of the same shell, or of a different shell, and the child process can be the
parent of other child and so on (almost) ad infinitum. Consequently a typical UNIX
system has many processes either waiting or running.

1.4.2 UNIX File System

Like other Operating system’s, UNIX organises information into files, and related
files may be conveniently organised in directories. Files may contain text, data,
executable programs, scripts (which are actually just data for a scripting program

9

Lab Manual

such as a shell), and may also be links to other files, or to physical devices or
communications channels.

The directory structure is hierarchical with the root directory, indicated by a
forward slash (/), at the base of the tree. This may contain files as well as other
directories such as /bin, /etc, /lib, /tmp, /usr, and /d. Actually in this example the root
directory will contain directory files called bin, etc, lib, tmp, usr and d, each of which
contains a list of files and their locations on the disk for each of the corresponding
directories. Each directory may contain further ordinary files and directory files, and
so on. The / character is used to delimit the components of the name. For example,
the /d directory may contain directories such as /d/user1 and /d/user2 and these may
contain the user’s home directories.

The entire directory hierarchy may reside on a single physical disk, or it may be
spread across several disks; the boundaries between physical disks cannot be seen
merely by looking at the directory hierarchy. Your system administrator will decide
where your home directory is to be both physically and logically located.

Every file in the hierarchy is identified by a pathname, this is merely a description of
the path you have to traverse to get from the root directory to the file. Strictly, a
filename is distinct from a pathname; a filename is just one of the components of the
pathname delimited by /'s.

Relative pathnames which have a start point anywhere but / in the hierarchy may be
used instead, and are often more convenient.

1.4.3 Wild Card Characters
Another shorthand character is the use of “wildcard” character in filenames,
technically called filename globbing. The * character in a filename represents any
string of characters, including no characters; the ? character represents any single
character. These wildcard characters may be used more than once, and may appear in
combination in a pathname.

Always note that UNIX is always fussy about the case of letters in commands,
usernames, passwords and filenames; so Vvs.data is not the same file as vvs.data.

1.4.4 Syntax of UNIX Commands

The general form of a UNIX command is: command [option(s)] [argument(s)] (the
[] here indicate that the items they contain are optional; they are not part of the
syntax).

If a typing error is made the line may be changed using the left/right arrow keys to
move the cursor and the Backspace key to delete the character to the left of the
cursor; new characters are inserted before the cursor. After keying-in the desired
command, press the Enter key to execute the command. The command may be
cancelled before execution by using Ctrl-u (hold down the Ctrl key and press the u
key). If an incorrectly spelled command is entered and spelling correction is enabled
in the shell, the shell will attempt to correct the mistake and ask for verification.

If the shell has filename completion enabled, use of the Tab key after part of a
command or filename has been typed will cause the shell to attempt completion of
the name, up to the character where the result is unique. Use of the Ctrl-d key will
cause all names that match what has been typed to be listed.

The options and arguments if present must be separated from the preceding item by at
least one space. However, multiple options may or may not need to be separated
from each other by at least 1 space; multiple arguments are always separated from
each other by at least 1 space. Options usually start with -, but occasionally it is a +,
and sometimes the – or + may be omitted.

A line may contain several commands (each possibly followed by options and/or
arguments) separated by semicolons (;). The commands are executed in sequence,

10

Unix Lab

just as if they had been typed on separate lines. If it is necessary to continue a
command onto the next line, end the line with a backslash (\), press Enter and
continue typing on the next line.

In a script anything after# on a line is treated as a comment, i.e., it is ignored.

To background a command simply add an ampersand (&) on the end.
Commands may be piped using a vertical bar | to separate them. As an alternative to
piping the output may be redirected to write to a file using > filename or appended
to the file using >> filename. This only redirects the standard output stream;
redirection of error messages (standard error stream) requires a different syntax
which is shell-dependent. The standard input stream may be redirected to read from
a file using <filename.

1.4.5 Getting Help
UNIX is an operating system, with hundreds of commands that can be combined to
execute thousands of possible actions. UNIX provides complete information about
each and every command which is stored in the UNIX man pages (man stands for
manual). We can go through them by giving the man command at the prompt as
shown below:

$ man cp

$ man ls

$ man grep

1.5 UNIX COMMANDS
With many competing standards (UNIX 98, UNIX95, POSIX.2, SVID3, 4.3BSD,
etc.) and most users having to deal with multiple systems, it’s crucial to know which
commands are important enough to be used on nearly every version of UNIX. The
following is a list of commonly used commands which are organised under different
categories for understanding and ease of use. Keys proceeded by a ^ character are
CONTROL key combinations.

Terminal Control Characters

^h backspace erase previously typed character
^u erase entire line of input so far typed
^d end-of-input for programs reading from terminal
^s stop printing on terminal
^q continue printing on terminal
^z currently running job; restart with bg or fg
DEL, ^c kill currently running program and allow clean-up before exiting
^\ emergency kill of currently running program with no chance of cleanup

Login and Authentication

login access computer; start interactive session
logout disconnect terminal session
passwd change local login password; you MUST set a non-trivial password

Information
date show date and time
history list of previously executed commands
pine send or receive mail messages
msgs display system messages
man show on-line documentation by program name

11

Lab Manual

info on-line documentation for GNU programs
w, who who is on the system and what are they doing
who am i who is logged onto this terminal
top show system status and top CPU-using processes
uptime show one line summary of system status
finger find out info about a user@system

File Management

cat combine files
cp copy files
ls list files in a directory and their attributes
mv change file name or directory location
rm remove files
ln create another link (name) to a file
chmod set file permissions
des encrypt a data file with a private key
find find files that match specified criteria

Display Contents of Files
cat copy file to display device
vi screen editor for modifying text files
more show text file on display terminal with paging control
head show first few lines of a file(s)
tail show last few lines of a file; or reverse line order
grep display lines that match a pattern
lpr send file to line printer
pr format file with page headers, multiple columns etc.
diff compare two files and show differences
cmp compare two binary files and report if different
od display binary file as equivalent octal/hex codes
file examine file(s) and tell you whether text, data, etc.
wc count characters, words, and lines in a file

Directories
cd change to new directory
mkdir create new directory
rmdir remove empty directory (remove files first)
mv change name of directory
pwd show current directory

Devices
df summarize free space on disk device
du show disk space used by files or directories

Special Character Handling for C-shell
* match any characters in a file name
~user shorthand for home directory of "user"
$name substitute value of variable "name"
\ turn off special meaning of character that follows
‘ In pairs, quote string w/ special chars, except !
“ In pairs, quote string w/ special chars, except !, $
` In pairs, substitute output from enclosed command

Controlling Program Execution for C-shell

& run job in background
DEL, ^c kill job in foreground
^z suspend job in foreground
fg restart suspended job in foreground
bg run suspended job in background
; delimit commands on same line
() group commands on same line

12

Unix Lab

! re-run earlier command from history list
ps print process status
kill kill background job or previous process
nice run program at lower priority
at run program at a later time
crontab run program at specified intervals
limit see or set resource limits for programs
alias create alias name for program (in .login)
sh, csh execute command file

Controlling Program Input/Output for C-shell

 | pipe output to input
 > redirect output to a storage file
 < redirect input from a storage file
 >> append redirected output to storage file
 tee copy input to both file and next program in pipe
 script make file record of all terminal activity

E-mail and communication

pine process mail with full-screen menu interface or read USENET news
groups

msgs read system bulletin board messages
mail send e-mail; can be run by other programs to send existing files via e-

mail
uuencode uudecode encode/decode a binary file for transmission via mail
finger translate real name to account name for e-mail
talk interactive communication in real-time
rn read USENET news groups

Editors and Formatting Utilities

sed stream text editor
vi screen editor
emacs GNU emacs editor for character terminals
xemacs GNU emacs editor for X-Windows terminals
pico very simple editor, same as used in "pine"
fmt fill and break lines to make all same length
fold break long lines to specified length

Printing

lpr send file to print queue
lpq examine status of files in print queue
lprm remove a file from print queue
enscript convert text files to PostScript format for printing

Interpreted Languages and Data Manipulation Utilities

sed stream text editor
perl Practical Extraction and Report Language
awk pattern scanning and processing language; 1985 vers.
sort sort or merge lines in a file(s) by specified fields
tr translate characters
cut cut out columns from a file
paste paste columns into a file
dd copy data between devices; reblock; convert EBCDIC

Networking/Communications

telnet remote network login to other computer
ftp network file transfer program
rlogin remote login to “trusted” computer
rsh execute single command on remote “trusted” computer
rcp remote file copy to/from “trusted” computer
host find IP address for given host name, or vice versa

13

Lab Manual

lynx Web browser for character based (text-only) terminals
gzip,
gunzip compress/decompress a file
tar combine multiple files/dirs into single archive
uuencode,
uudecode encode/decode a binary file for transmission via mail

Compilers, Interpreters and Programming Tools

csh command language interpreter (shell scripts)
f77 DEC Fortran 77 compiler
f2c convert fortran source code to C source code
cc, c89 DEC ANSI 89 standard C compiler
gcc GNU C compiler
g++ GNU C++ compiler
pc DEC Pascal compiler
dbx symbolic debugger for compiled C or Fortran
make recompile programs from modified source
gmake GNU version of make utility
awk interpreter for awk language
error analyze and disperse compiler error messages.

1.6 DESCRIPTION OF COMMONLY USED UNIX
COMMANDS

The description for the most commonly used UNIX commands is given below in an
alphabetic order.

cat

cat allows you to read multiple files and then print them out. You can combine files
by using the > operator and append files by using >>.

Syntax: cat [argument] [specific file]

Example:

cat abc.txt

If you want to append three files (abc.txt, def.txt, xyz.txt), give the command as,
cat abc.txt def.txt xyz.txt > all

cd, chdir

cd (or chdir) stands for “change directory”. This command is the key command to
move around your file structure.

Syntax: cd [name of directory you want to move to]

When changing directories, start with / and then type the complete file path, like
cd /vvs/abc/xyz

chmod

chmod (which stands for “change mode”) changes who can access a particular file. A
“mode” is created by combining the various options from who, opcode, and
permission.

Syntax: chmod [option] mode file
If you look at a list of files using the long list command ls –l, you’ll see the
permissions, owner, file size, modification time, and filename. The first column of
the list shows who can read, write, and execute the files or directories, in other words,
the permissions. It basically shows who has permission to do what to a given file or
directory. r stands for “read” and means that you’re allowed to read the file or
directory. w stands for “write” and gives permission to edit or change the file as well

14

Unix Lab

as create, move, rename, or remove a directory. x stands for “execute” which gives
permission to run a file or search a directory. Every file or directory has four sets of
rwx permissions. The first set represents the user (u), the second set represents the
group (g), the third set represents other (o), and the fourth set represents all (a). The
column will look like this:
rwxrwxrwx

Each set of rwx represents user, group, and other respectively. Only the owner of a
file or a privileged user may change the permissions on a file. There are two ways to
change permissions on a file or directory, either numerically or by using lettered
commands. Both ways use the command chmod. To add permissions to a file, you
use +, to remove permissions you use-.

For example, take a file:
-rw-r--r-- 1 yash mony 476 Apr 14 17:13 vvs.txt

To allow a group (mony, in this case) “write” access, you would type:

chmod g+w vvs.txt

If you wanted to remove “read” ability from “other” you would type:

chmod o-r vvs.txt
It is also possible to specify permissions using a three-digit sequence. This is a more
efficient way to change permissions (or at least it requires less typing), so use this
method if it doesn’t confuse you. Each type of permission is given an octal value.
Read is given the value of 4, write is given the value of 2, and execute is given the
value of 1. These values are added together for each user category. The permissions
are changed by using a three-digit sequence with the first digit representing owner
permission, the second digit representing group permission, and the third digit
representing other permission. For example, if you wanted to make vvs.txt readable,
writable, and executable for the user, readable and writable for the group, and
readable for other, you would type:
chmod 764 vvs.txt
The first digit means readable and writable for the user (4+2+1), the second digit
means readable and writable for the group (4+2+0), and the third digit means
readable for other (4+0+0).
If you want to change the permissions on a directory tree use the -R option. chmod -R
will recursively change the permissions of directories and their contents.
chown

chown changes who owns a particular file or set of files. New owner files refer to a
user ID number or login name that is usually located in the /etc/password directory.
The owner of a file or directory can be seen by using the command.

Syntax: chown [option] newowner files

Only the owner of a file or a privileged user can change the permissions on a file or
directory. The following example changes the owner of vvs.txt to sridhar
chown sridhar vvs.txt

cp

The cp command copies files or directories from one place to another. You can copy
a set of files to another file, or copy one or more files under the same name in a
directory. If the destination of the file you want to copy is an existing file, then the
existing file is overwritten. If the destination is an existing directory, then the file is
copied into that directory.

15

Lab Manual

Syntax: cp [options] file1 file2

If you want to copy the file favourites.html into the directory called laksh, you give
the command as:

 cp favourites.html /vvs/laksh/

A handy option to use with cp is -r. This recursively copies a particular directory and
all of its contents to the specified directory, so you won’t have to copy one file at a
time.

date

The date command can be used to display the date or to set a date.
Syntax: date [option] [+format]
 date [options] [string]

The first structure shows how date can be used to display the current date. A certain
format can be specified in which the date should be displayed. Check the Unix
manual for specific formats and options. The second structure allows you to set the
date by supplying a numeric string. Only privileged users will be able to use this
second command structure.

diff

diff displays the lines that differ between two given files.

Syntax: diff [options] [directory options] file1 file2

diff can be an extremely valuable tool for both checking errors and building new
pages. If you run a diff between two files, you'll be shown what differences the files
have line by line. The lines referring to file1 are marked with the < symbol. The lines
referring to file2 are marked by the > symbol. If the file is a directory, diff will list
the file in the directory that has the same name as file2. If both of the files are
directories, diff will list all the lines differing between all files that have the same
name.

If you have a file that is not working properly, it can be a great help to check it
against a similar file that is working. It will often quickly alert you to a line of code
that’s missing.

A handy option to use if you want to generally compare two files without noting the
complex differences between them is the -h option (h stands for half-hearted). Using -
i as an option will ignore differences in uppercase and lowercase characters between
files, and -b will ignore repeating blanks and line breaks.
exit

The exit command allows you to terminate a process that is currently occurring.
For example, if you wanted to leave a remote host that you were logged onto (see
rlogin also), you should type exit. This would return you to your home host.
find

find searches through directory trees beginning with each pathname and finds the
files that match the specified condition(s). You must specify at least one pathname
and one condition.
Syntax: find pathname(s) condition(s)

There are several handy conditions you can use to find exactly what you want. The -
name condition will find files whose names match a specified pattern. The structure
for the name condition is:
find pathname -name pattern

16

Unix Lab

The condition -print will print the matching files to the pathname specified. -print
can also be used in conjunction with other conditions to print the output.

If you wanted to find all the files named favorites.html in the directory Ram, then
you’d do this:
find /Ram -name favorites.html –print

This looks through the directory Ram and finds all the files in that directory that
contain favorites.html, then prints them to the screen. Your output would look like
this:
 /Ram/sixteen_candles/favorites.html
/Ram/favorites.html
/Ram/breakfast_club/favorites.html

All meta-characters (!, *, ., etc.) used with -name should be escaped (place a \ before
the character) or quoted. Meta-characters come in handy when you are searching for
a pattern and only know part of the pattern or need to find several similar patterns.
For example, if you are searching for a file that contains the word “favorite”, then use
the meta-character * to represent matching zero or more of the preceding characters.
This will show you all files which contain favorite.
find /Ram -name '*favorite*' -print

This looks through the directory Ram and finds all the files in that directory that
contain the word “favorite”. The output would look like this:
 /Ram/sixteen_candles/favorites.html
/Ram/favorites.html
/Ram/least_favorites.html
/Ram/breakfast_club/favorites.html
/Ram/favorite_line.html

The -user condition finds files belonging to a particular user ID or name.

finger

finger displays information about various users as well as information listed in the
.plan and .project files in a user’s home directory. You can obtain the information on
a particular user by using login or last names. If you use the latter, the info on all
users with that last name will be printed. Environments that are hooked up to a
network recognize arguments (users) in the form of user@host or @ host.
Syntax: finger [options] users
grep

The grep command searches a file or files for lines that match a provided regular
expression (“grep” comes from a command meaning to globally search for a regular
expression and then print the found matches).
Syntax: grep [options] regular expression [files]

To exit this command, type 0 if lines have matched, 1 if no lines match, and 2 for
errors. This is very useful if you need to match things in several files. If you wanted
to find out which files in our vvs directory contained the word “mca” you could use
grep to search the directory and match those files with that word. All that you have to
do is give the command as shown:
grep ‘mca’ /vvs/*
The * used in this example is called a meta-character, and it represents matching zero
or more of the preceding characters. In this example, it is used to mean “all files and
directories in this directory”. So, grep will search all the files and directories in vvs
and tell you which files contain “mca”.

head

17

Lab Manual

head prints the first couple of lines of one or multiple files. -n is used to display the
first n lines of a file(s). The default number of lines is 10.

Syntax: head [-n] [files]

For example, the following command will display the first 15 lines of favourites.html.
head -15 favourites.html

kill

kill ends the execution of one or more process ID’s. In order to do this you must own
the process or be designated a privileged user. To find the process ID of a certain job
give the command ps.

Syntax: kill [options] PIDs

There are different levels of intensity to the kill command, and these can be
represented either numerically or symbolically. kill -1 or HUP makes a request to the
server to terminate the process, while kill -9 or kill KILL forces a process to
terminate absolutely. Most politely, UNIX users will attempt to kill a process using -1
first before forcing a process to die.
less

less is similar to more in that it displays the contents of files on your screen. Unlike
more, less allows backward and forward movement within the file. It does not read
the whole file before displaying its contents, so with large files less displays faster
than more. Press h for assistance with other commands or q to quit.

Syntax: less [options] [files]

lprm

lprm removes printer queue requests.

Syntax: lprm /usr/ucb/lprm [optons] [job#] [users]

The lprm command will remove a job or jobs from a printer’s queue. If lprm is used
without any arguments, it will delete the active job if it is owned by the user. If the
command is used with -, then all the jobs owned by the user will be removed. To
remove a specific job, use the job number.

ls

ls will list all the files in the current directory. If one or more files are given, ls will
display the files contained within “name” or list all the files with the same name as
“name”. The files can be displayed in a variety of formats using various options.

Syntax: ls [options] [names]

ls is a command you'll end up using all the time. It simply stands for list. If you are in
a directory and you want to know what files and directories are inside that directory,
type ls. Sometimes the list of files is very long and it flies past your screen so quickly
you miss the file you want. To overcome this problem give the command as shown
below:
ls | more
The character | (called pipe) is typed by using shift and the \ key. | more will show as
many files as will fit on your screen, and then display a highlighted “more” at the
bottom. If you want to see the next screen, hit enter (for moving one line at a time) or
the spacebar (to move a screen at a time). | more can be used anytime you wish to
view the output of a command in this way.

18

Unix Lab

A useful option to use with ls command is -l. This will list the files and directories in
a long format. This means it will display the permissions (see chmod), owners, group,
size, date and time the file was last modified, and the filename.
 drwxrwxr-x vvs staff 512 Apr 5 09:34 sridhar.txt
 -rwx-rw-r-- vvs staff 4233 Apr 1 10:20 resume.txt
-rwx-r--r-- vvs staff 4122 Apr 1 12:01 favourites.html
There are several other options that can be used to modify the ls command, and many
of these options can be combined. -a will list all files in a directory, including those
files normally hidden. -F will flag filenames by putting / on directories, @ on
symbolic links, and * on executable files.

man

The man command can be used to view information in the online Unix manual.

Syntax: man [options] [[section] subjects]

man searches for information about a file, command, or directory and then displays it
on your screen. Each command is a subject in the manual. If no subject is specified,
you must give either a keyword or a file. You can also search for commands that
serve a similar purpose. For example, if you want more information about the chmod
command, you should type:
man chmod
A screen will then appear with information about chmod. Type q to quit.

mkdir

mkdir creates a new directory.

Syntax: mkdir [options] directory name

For example, to create a directory called parkhyath in the present working directory,
give the command as,

mkdir prakhyath
more

more displays the contents of files on your screen.
Syntax: more [options] [files]

To have the next line displayed, hit the return key, otherwise press the spacebar to
bring up the next screen. Press h for assistance with other commands, n to move to
the next file, or q to quit.
mv

mv moves files and directories. It can also be used to rename files or directories.
Syntax: mv [options] source target

If you wanted to rename vvs.txt to vsv.txt, you should give the command as:
mv vvs.txt vsv.txt
After executing this command, vvs.txt would no longer exist, but a file with name
vsv.txt would now exist with the same contents.

passwd

The passwd command creates or changes a user’s password. Only the owner of the
password or a privileged user can make these changes.

Syntax: passwd [options] files

19

Lab Manual

ps

The ps command prints information about active processes. This is especially useful
if you need to end an active process using the kill command. Use ps to find out the
process ID number, then use kill to end the process.
Syntax: ps [options]

pwd

pwd prints the pathname of the current directory. If you wanted to know the path of
the current directory you were in you give the command as pwd. You will get the
complete path.

rlogin

The rlogin command, which stands for remote login, lets you connect your local host
to a remote host.

Syntax: rlogin [options] host

If you wanted to connect to the remote host vsmanyam and you were on sree, you
would do this:
rlogin vsmanyam password:******

You would then be at vsmanyam

rm

rm removes or deletes files from a directory.
Syntax: rm [options] files

In order to remove a file, you must have write permission to the directory where the
file is located. While removing a which does’t have write permission on, a prompt
will come up asking you whether or not you wish to override the write protection.

The -r option is very handy and very dangerous. -r can be used to remove a directory
and all its contents. If you use the -i option, you can possibly catch some disastrous
mistakes because it’ll ask you to confirm whether you really want to remove a file
before going ahead and doing it.
rmdir

rmdir allows you to remove or delete directories but not their contents. A directory
must be empty in order to remove it using this command.

Syntax: rmdir [options] directories
If you wish to remove a directory and all its contents, you should use rm -r.

su

su stands for superuser (a privileged user), and can be used to log in as another user.
If no user is specified and you know the appropriate password, su can be used to log
in as a superuser.

Syntax: su [option] [user] [shell_args]

tail

The tail command will print the last ten lines of a file. tail is often used with the
option -f, which tells tail not to quit at the end of file and instead follow the file as it
grows.

Syntax: tail [options] [file]

20

http://www.webmonkey.com/webmonkey/reference/unix_guide/rm.html

Unix Lab

Use ctrl-c to exit this command.

telnet

You can communicate with other computers by using the telnet protocol. The host
must be a name or an Internet address. telnet has two modes: the command mode,
which is indicated by the telnet > prompt, and an input mode which is usually a
session where you would log on to the host system. The default mode is command
mode, so if no host is given it will automatically go into this mode. If you need help
while in the command mode, type? or help.

Syntax: telnet [host [port]]

who

The who command prints out information about the most recent status of the system.
If no options are listed, then all of the usernames currently logged onto the system are
displayed.

Syntax: who [options] [file]

The option am i will print the name of the current user. The -u option will display
how long the terminal has been idle.

1.7 INTRODUCTION TO SHELL
PROGRAMMING

The UNIX operating system was designed by programmers for programmers. The
hardware resources demanded a compact, efficient kernel and flexible file-handling
system. UNIX provides tool making tool for programmers with shell. Shells are
really interpreted languages, any sequence of commands you wish to run can be
placed in a file and run regularly Unix provides, three shells Bourne Shell, C Shell
and Korn Shell. User is requested to go through the shell available in your system.
This material is assumed to be on Bourne Shell.

1.7.1 History of UNIX Shells
In the beginning there was the Bourne shell /bin/sh (written by S. R. Bourne). It had
(and still does) a very strong, powerful syntactical language built into it, with all the
features that are commonly considered to produce structured programs; it has
particularly strong provisions for controlling input and output and in its expression
matching facilities. But no matter how strong its input language is, it had one major
drawback; it made nearly no concessions to the interactive user (the only real
concession being the use of shell functions and these were only added later) and so
there was a gap for something better.

Along came the people from UCB and the C-shell /bin/csh was born. Into this shell
they put several concepts which were new, (the majority of these being job control
and aliasing) and managed to produce a shell that was much better for interactive use.
But as well as improving the shell for interactive use they also threw out the baby
with the bath water and went for a different input language.

The theory behind the change was fairly good, the new input language was to
resemble C, the language in which UNIX itself was written, but they made a
complete mess of implementing it. I/o control problem was solved and bugs
appeared. The new shell was simply too buggy to produce robust shell scripts and so
everybody stayed with the Bourne shell for that, but it was considerably better for
interactive use so changed to the C shell, this resulted in the awkward
stupid situation where people use a different shell for interactive work than for non-
interactive, a situation which a large number of people still find themselves in today.

21

Lab Manual

Eventually David Korn from AT&T had the bright idea to sort out this mess and the
Korn shell /bin/ksh made its appearance. This quite sensibly junked the C shells
language and reverted back to the Bourne shell language, but it also added in the
many features that made the C shell good for interactive work (you could say it was
the best of both worlds), on top of this, it also added some features from other
operating systems. The Korn shell became part of System V but had one major
problem; unlike the rest of the UNIX shells it wasn’t free, you had to pay AT&T for
it.

It was at about this time that the first attempts to standardize UNIX started in the
form of the POSIX standard. POSIX specified more or less the System V Bourne
Shell (by this time the BSD and System V versions had got slightly different). Later
the standard is upgraded, and somehow the new standard managed to look very much
like ksh.

Also at about this time the GNU project was underway and they decided that they
needed a free shell, they also decided that they wanted to make this new shell POSIX
compatible, thus bash (the Bourne again shell) was born. Like the Korn shell bash
was based upon the Bourne shells language. Bash was quickly adopted for LINUX
(where it can be configured to perform just like the Bourne shell), and is the most
popular of the free new generation shells.

Meanwhile Tom Duff faced with the problem of porting the Bourne shell to Plan 9,
revolts and writes rc instead, he published a paper on it, and Byron Rakitzis re-
implemented it under UNIX. With the benefit of a clean start Rc ended up smaller,
simpler, more regular and in most peoples opinion a much cleaner shell.

The search for the perfect shell still goes on and the latest entry into this arena is zsh.
Zsh was written by Paul Falstad. It is based roughly on the Bourne shell.

1.7.2 Deciding on a Shell

The following are some of the things that are to be considered to decide on which
shell to work with.

How much time do I have to learn a new shell?

There is no point in using a shell with a different syntax, or a completely different
alias system if you haven’t the time to learn it. If you have the time and are presently
using csh or tcsh it is worth considering a switch to a Bourne shell variant.

What do I wish to be able to do with my new shell?

The main reason for switching shells is to gain extra functionality; it’s vital you know
what you are gaining from the switch.

Do I have to be able to switch back to a different shell?

If you may have to switch back to a standard shell, it is fairly important you don’t
become too dependent on extra features and so can’t use an older shell.

How much extra load can the system cope with?

The more advanced shells tend to take up extra CPU, since they work in cbreak
mode; if you are on an overloaded machine they should probably be avoided; this can
also cause problems with an overloaded network. This only really applies to very old
systems nowadays.

What support is given for my new shell?

If your new shell is not supported make sure you have someone you can ask if you
encounter problems or that you have the time to sort them out yourself.

Which shell am I using already?

22

Unix Lab

Switching between certain shells of the same syntax is a lot easier than switching
between shells of a different syntax. So if you haven’t much time a simple upgrade
(e.g., csh to tcsh) may be a good idea.

Can I afford any minor bugs?

Like most software all shells have some bugs in them (especially csh), you can afford
the problems that may occur because of them.

Do you need to be able to use more than one shell?

If you use more than one system then you may need to know more than one shell at
the same time. How different are these two shells and can you manage the differences
between them?

1.7.3 Shell Command files

It is possible to repeat a set of commands many times; as if the whole set were just a
single command. UNIX allows you to put all your commands in a file in proper
order, and then execute them one by one. When you type the file name, shell reads
its contents and starts executing the commands in it, one by one. The file is called a
shell file and the sequence of commands in it may be called a shell program or a
shell procedure. Let us create a shell file called shellp (we can give any relevant file
name) which contains UNIX commands:

who am i and date

$ cat shellp
who am i
date

To execute this shell program shellp, first of all we to change the mode of the file
using the chmod command, so that it will be executable.

$ chmod 777 shellp

Then execute the shell program by giving the command as follows:

$ shellp

Let us see how to write the Bourne shell scripts in the following section.

1.8 BOURNE SHELL PROGRAMMING

The focus of this section is to get you to understand and run some Bourne shell
scripts. There are example scripts for you to run. Historically, people have been
biased towards the Bourne shell over the C shell because in the early days the C shell
was buggy. These problems are fixed in many C shell implementations, however
many still prefer the Bourne shell. You can write shell programs by creating scripts
containing a series of shell commands. The first line of the script should start with #!
which indicates to the kernel that the script is directly executable. You immediately
follow this with the name of the shell, or program (spaces are allowed), to execute,
using the full path name. Generally, you can count on having up to 32 characters,
possibly more on some systems, and can include one option. So to set up a Bourne
shell script the first line would be:

#! /bin/sh
or for the C shell:
#! /bin/csh

You also need to specify that the script is executable by setting the proper bits on the
file with chmod, e.g.:

% chmod +x shell_script

23

Lab Manual

To introduce comments within the scripts use # (it indicates a comment from that
point until the end of the line).
Shell scripting involves chaining several UNIX commands together to accomplish a
task. For example, you might run the ‘date’ command and then use today’s date as
part of a file name. Let us see how to do this below:

To try the commands below start up a Bourne shell:
Example:

/bin/sh
#A variable stores a string (try running these commands in a Bourne shell)
name= “vvs”
echo $name

The quotes are required in the example above because the string contains a special
character (the space)

A variable may store a number as:
num =137

The shell stores this as a string even though it appears to be a number. A few UNIX
utilities will convert this string into a number to perform arithmetic:

expr $num + 3

Try defining num as ‘7m8’ and try the expr command again
What happens when num is not a valid number?
Now you may exit the Bourne shell with
exit

I/O Redirection

The wc command counts the number of lines, words, and characters in a file
wc /etc/passwd
wc -l /etc/passwd

You can save the output of wc (or any other command) with output redirection
wc /etc/passwd > wc.file

You can specify the input with input redirection
wc < /etc/passwd

Many UNIX commands allow you to specify the input file by name or by input
redirection
sort /etc/passwd
sort < /etc/passwd

You can also append lines to the end of an existing file with output redirection
wc -l /etc/passwd >> wc.file

Splitting a file

It may happen that the file you are handling is huge and takes too much time to edit.
In such a case you might feel that the file should be split into smaller files. The split
utility performs this task. Having split a file into smaller pieces, the pieces can be
edited singly and then can be concatenated into one whole file again with the cat
command.

To split a file vvs, containing 100 lines into 25 lines each, we should give the
command as:

$ split - 25 vvs
xaa
xab

24

Unix Lab

xac
xad

Backquotes

The backquote character looks like the single quote or apostrophe, but slants the other
way.

It is used to capture the output of a UNIX utility. A command in backquotes is
executed and then replaced by the output of the command.

Execute the following commands:
date
save_date= ‘date’
echo The date is $save_date

Notice how echo prints the output of ‘date’, and gives the time when you define the
save_date variable. Store the following in a file named backquotes.sh and execute it
(right click and save in a file)

#!/bin/sh
Illustrates using backquotes
Output of 'date' stored in a variable
Today= ‘date’
echo Today is $Today

Execute the script with the following command:

sh backquotes.sh

The above example shows how you can write commands into a file and execute the
file with a Bourne shell. Backquotes are very useful, but be aware that they slow
down a script if you use them hundreds of times. You can save the output of any
command with backquotes, but be aware that the results will be reformatted into one
line. Try this:
LS=`ls -l`
echo $LS

Example:

Store the following in a file named simple.sh and execute it.
#!/bin/sh
Show some useful info at the start of the day
date
echo Good morning $USER
cal
last | head -6

After execution, the output shows current date, calendar, and a six previous logins.
Notice that the commands themselves are not displayed, only the results.

To display the commands verbatim as they run, execute with

sh -v simple.sh

Another way to display the commands as they run is with -x

sh -x simple.sh

What is the difference between -v and -x? Notice that with -v you see ‘$USER’ but
with -x you see your login name. Run the command 'echo $USER' at your terminal
prompt and see that the variable $USER stores your login name. With -v or -x (or
both) you can easily relate any error message that may appear to the command that
generated it.

25

Lab Manual

When an error occurs in a script, the script continues executing at the next
command. Verify this by changing ‘cal’ to ‘caal’ to cause an error, and then run the
script again. Run the 'caal' script with 'sh -v simple.sh' and with 'sh -x simple.sh' and
verify the error message comes from cal. Other standard variable names include:
$HOME, $PATH, $PRINTER. Use echo to examine the values of these variables.

Shell Variables

A variable is a name that stores a string. It’s often convenient to store a filename in a
variable. Similar to programming languages, the shell provides the user with the
ability to define variables and to assign values to them. A shell variable name begins
with a letter (upper or lowercase) or underscore character and optionally is followed
by a sequence of letters, underscore characters or numeric characters. The shell gives
you the capability to define a named variable and assign a value to it.
The syntax is as follows:

$ variable = value

The value assigned to the variable can then be retrieved by preceding the name of the
variable with a dollar sign, that is $ variable. For example,

$ length = 50
$ breadth = 20
$ echo $ length, $ breadth

 50 20

The “echo” command produces the output in which the values assigned to the
variables are printed.

Let us see another example:
$ message = "please log out within 2 minutes"
$ echo $ message
 please logout within 2 minutes

The value assigned to a variable can be defined in terms of another shell variable or
even defined in terms of itself.
$ length = 50
$ length = display $ length
$ echo $ length
Display 50

The above can be modified into

$ length = 50
$ length = ${length} value
$ echo $ length
50 value

Store the following in a file named variables.sh and execute it.

Example:

#!/bin/sh
An example with variables
filename="/etc/passwd"
echo "Check the permissions on $filename"
ls -l $filename
echo "Find out how many accounts there are on this system"
wc -l $filename

Now if we change the value of $filename, the change is automatically propagated
throughout the entire script.

Performing Arithmetic

If a shell assigned a numeric value, you can perform some basic arithmetic on the
value using the command expr. Let us understand with the help of an example.

26

Unix Lab

$ expr 2 + 3
5

expr also supports subtraction, multiplication and integer division. For example:

$ expr 5 - 6
-1
$ expr 11 '*' 4
44
$ expr 5 / 2
2
$ expr 5%2
1
Another example,
$expr 5 * 7

Backslash required in front of '*' since it is a filename wildcard and would be
translated by the shell into a list of file names. You can save arithmetic result in a
variable. Store the following in a file named arith.sh and execute it

Example:

#!/bin/sh
Perform some arithmetic
x=24
y=4
Result=`expr $x * $y`
echo "$x times $y is $Result"

Comparison Functions

The test command is used to perform comparisons test will perform comparisons on
strings as well as numeric values test will return 1 if the conditions is true and 0 if it
is false.

There are three types of operations for which test are used. There are numeric
comparisons, string comparisons and status test for the file system. To compare two
values we use flags, that are placed between the two arguments

Test
Operators

Flag

Meaning

- eq True if the numbers are equal
- ne True if the numbers are not equal

- lt True if the first number is less than the second number

- le True if the first numbers is less than or equal to the second
number

- gt True if the first number is greater than the second number

-ge True if the first number is greater than or equal to the second
number.

Let us see some examples:

$ test 5 - eq 4
False

The above example returned false because 5 and 4 are not equal.

$ test abc = Abc
False

27

Lab Manual

For string comparison we use = symbol.

Translating Characters

Prepare a text file namely vvs.txt in which one of the word’s is “fantastic”. The utility
tr translates characters

tr 'a' 'Z' < vvs.txt

This example shows how to translate the contents of a variable and display the result
on the screen. Store the following in a file named tr1.sh and execute it.
Example:
#!/bin/sh

Translate the contents of a variable

name= “fantastic”
echo $name | tr 'a' 'i'

Execute the script and see the output.
This example shows how to change the contents of a variable.
 Store the following in a file named tr2.sh and execute it.

Example:

#!/bin/sh

Illustrates how to change the contents of a variable with tr

name= “fantastic”
echo "name is $name"
name=`echo $name | tr 'a' 'i'`
echo "name has changed to $name"
You can also specify ranges of characters. This example converts upper case to lower
case

tr 'A-Z' 'a-z' < file

Now you can change the value of the variable and your script has access to the new
value

Looping constructs

Executing a sequence of commands on each of several files with for loops
Store the following in a file named loop1.sh and execute it.
Note: You have to have three files namely simple.sh , variables.sh and loop1.sh in the
current working directory.

Example;

#!/bin/sh
Execute ls and wc on each of several files
File names listed explicitly
for filename in simple.sh variables.sh loop1.sh
do
 echo "Variable filename is set to $filename..."
 ls -l $filename
 wc -l $filename
done

This executes the three commands: echo, ls and wc for each of the three file names.
You should see three lines of output for each file name. Filename is a variable, set by
“for” statement and referenced as $filename. Now we know how to execute a series
of commands on each of several files.

28

Unix Lab

Using File Name Wildcards in For Loops

Store the following in a file named loop2.sh and execute it.

Example:

#!/bin/sh
Execute ls and wc on each of several files
File names listed using file name wildcards
for filename in *.sh
do
 echo "Variable filename is set to $filename..."
 ls -l $filename
 wc -l $filename
done

You should see three lines of output for each file name ending in .sh. The file name
wildcard pattern *.sh gets replaced by the list of filenames that exist in the current
directory. For another example with filename wildcards try this command:

echo *.sh

Search and Replace in Multiple Files

Sed performs global search and replace on a single file.
Note: To execute this example you need to have required files.

sed -e 's/example/EXAMPLE/g' sdsc.txt > sdsc.txt.new

The original file sdsc.txt is unchanged. How can we arrange to have the original file
over-written by the new version? Store the following in a file named s-and-r.sh and
execute it.

Example:
#!/bin/sh
Perform a global search and replace on each of several files
File names listed explicitly
for text_file in sdsc.txt nlanr.txt
do
 echo "Editing file $text_file"
 sed -e 's/example/EXAMPLE/g' $text_file > temp
 mv -f temp $text_file
done

First, sed saves new version in file temp. Then, use mv to overwrite original file with
new version.

Command-line Arguments

Command-line arguments follow the name of a command. For example:

ls -l .cshrc /etc

The command above has three command-line arguments as shown below:

-l (an option that requests long directory listing)
.cshrc (a file name)
/etc (a directory name)

An example with file name wildcards:
wc *.sh

How many command-line arguments were given to wc? It depends on how many
files in the current directory match the pattern *.sh. Use 'echo *.sh' to see them. Most

29

Lab Manual

UNIX commands take command-line arguments. Your scripts may also have
arguments.

Store the following in a file named args1.sh

Example:

#!/bin/sh
Illustrates using command-line arguments
Execute with
sh args1.sh On the Waterfront
echo "First command-line argument is: $1"
echo "Third argument is: $3"
echo "Number of arguments is: $#"
echo "The entire list of arguments is: $*"

Execute the script with

sh args1.sh -x On the Waterfront

Words after the script name are command-line arguments. Arguments are usually
options like -l or file names.

Looping Over the Command-line Arguments

Store the following in a file named args2.sh and execute it.

Example:

#!/bin/sh
Loop over the command-line arguments
Execute with
sh args2.sh simple.sh variables.sh
for filename in "$@"
do
 echo "Examining file $filename"
 wc -l $filename
done

This script runs properly with any number of arguments, including zero. The shorter
form of the for statement shown below does exactly the same thing:

for filename
do
...

But, don't use:

for filename in $*

It will fail if any arguments include spaces. Also, don’t forget the double quotes
around $@.

If construct and read command

Read one line from stdin, store line in a variable.

read variable_name

Ask the user if he wants to exit the script. Store the following in a file named read.sh
and execute it.

Example:

#!/bin/sh

30

Unix Lab

Shows how to read a line from stdin
echo "Would you like to exit this script now?"
read answer
if ["$answer" = y]
then
 echo "Exiting..."
 exit 0
fi

Command Exit Status

Every command in UNIX should return an exit status. Status is in range 0-255.Only 0
means success. Other statuses indicate various types of failures. Status does not print
on screen, but is available through variable $?.

The following example shows how to examine exit status of a command.

Example:

Store the following in a file named exit-status.sh and execute it.
#!/bin/sh
Experiment with command exit status
echo “The next command should fail and return a status greater than zero”
ls /nosuchdirectory
echo “Status is $? from command: ls /nosuchdirectory”
echo “The next command should succeed and return a status equal to zero”
ls /tmp
echo “Status is $? from command: ls /tmp”

Example given below shows if block using exit status to force exit on failure.

Store the following in a file named exit-status-test.sh and execute it.

Example:

#!/bin/sh
Use an if block to determine if a command succeeded
echo "This mkdir command fails unless you are root:"
mkdir /no_way
if ["$?" -ne 0]
then
 # Complain and quit
 echo "Could not create directory /no_way...quitting"
 exit 1 # Set script's exit status to 1
fi
echo "Created directory /no_way"

Regular Expressions

For searching zero or more characters we use the wild characters.*. Let’s see the
examples:

grep ‘provided.*access’ sdsc.txt
sed -e ‘s/provided.*access/provided access/’ sdsc.txt

To search for text at beginning of line we give the command,
grep '^the' sdsc.txt

To search for text at the end of line we give the command,
grep 'of$' sdsc.txt

Asterisk means zero or more the preceding characters.

31

Lab Manual

a* zero or more a's
aa* one or more a's
aaa* two or more a's

Examples:
Delete all spaces at the ends of lines
sed -e 's/ *$//' sdsc.txt > sdsc.txt.new

Turn each line into a shell comment
sed -e 's/^/# /' sdsc.txt

The case statement

The next example shows how to use a case statement to handle several contingencies.
The user is expected to type one of three words. A different action is taken for each
choice.

Store the following in a file named case1.sh and execute it.

Example:

#!/bin/sh
An example with the case statement
Reads a command from the user and processes it
echo "Enter your command (who, list, or cal)"
read command
case "$command" in
 who)
 echo "Running who..."
 who
 ;;
 list)
 echo "Running ls..."
 ls
 ;;
 cal)
 echo "Running cal..."
 cal
 ;;
 *)
 echo "Bad command, your choices are: who, list, or cal"
 ;;
esac
exit 0

The last case above is the default, which corresponds to an unrecognised entry. The
next example uses the first command-line arg instead of asking the user to type a
command.

Store the following in a file named case2.sh and execute it.

Example:

#!/bin/sh
An example with the case statement
Reads a command from the user and processes it
Execute with one of
sh case2.sh who
sh case2.sh ls
sh case2.sh cal
echo "Took command from the argument list: '$1'"
case "$1" in
 who)
 echo "Running who..."

32

Unix Lab

 who
 ;;
 list)
 echo "Running ls..."
 ls
 ;;
 cal)
 echo "Running cal..."
 cal
 ;;
 *)
 echo "Bad command, your choices are: who, list, or cal"
 ;;
esac

The patterns in the case statement may use file name wildcards.

The while statement

Example given below loops over two statements as long as the variable i is less than
or equal to ten. Store the following in a file named while1.sh and execute it.

Example:

#!/bin/sh
Illustrates implementing a counter with a while loop
Notice how we increment the counter with expr in backquotes
i="1"
while [$i -le 10]
do
 echo "i is $i"
 i=`expr $i + 1`
done

The example given below uses a while loop to read an entire file. The while loop exits
when the read command returns false exit status (end of file). Store the following in a
file named while2.sh and execute it.

Example:

#!/bin/sh
Illustrates use of a while loop to read a file
cat while2.data | \
while read line
do
 echo "Found line: $line"
done

The entire while loop reads its stdin from the pipe. Each read command reads another
line from the file coming from cat. The entire while loop runs in a subshell because of
the pipe. Variable values set inside while loop not available after while loop.

33

Lab Manual

1.9 PRACTICAL SESSIONS
Session 1
1) Explore all the UNIX commands given in this manual.
2) Create a directory.
3) Create a subdirectory in the directory created.
4) Change your current directory to the subdirectory.
5) Display the calendar for the current month.
6) Get a directory listing of the parent directory.
7) How many users were logged onto your system?
8) Display your name in the form of a banner.
9) Display the name of device name of your terminal.
10) Move to the root directory.

Session 2
11) Change your directory to the directory exercises. Create a file called example1

using the cat command containing the following text:

water, water everywhere
and all the boards did shrink;
water, water everywhere,
No drop to drink.

12) Use the man command to obtain further information on the finger command.
13) List all the processes that are presently running.
14) List the text files in your current directory.
15) Make a copy of any text file.
16) Rename one of your text files in the current directory.
17) Delete an unneeded copy of a file.
18) Print out any file on paper.
19) Send a message to another user on your UNIX system, and get them to reply.
20) Create a small text file and send it to another user.

Session 3

34

Unix Lab

21) When you receive a message, save it to a file other than your mailbox.
22) Send a message to a user on a different computer system.
23) Try to move to the home directory of someone else in your group. There are

several ways to do this, and you may find that you are not permitted to enter
certain directories. See what files they have, and what the file permissions are.

24) Try to copy a file from another user’s directory to your own.
25) Set permissions on all of your files and directories to those that you want. You

may want to give read permission on some of your files and directories to
members of your group.

26) Create a number of hierarchically related directories and navigate through them
using a combination of absolute pathnames (starting with "/") and relative
pathnames.

27) Try using wildcards (“*” and possibly “?”).
28) Put a listing of the files in your directory into a file called filelist. (Then delete

it!)
29) Create a text file containing a short story, and then use the spell program to

check the spelling of the words in the file.

30) Redirect the output of the spell program to a file called errors.

Session 4

31) Type the command ls -l and examine the format of the output. Pipe the output
of the command ls -l to the word count program wc to obtain a count of the
number of files in your directory.

32) Use cut to strip away the reference material and leave just the text field.

33) Use tr to strip away any tags that are actually in the text (e.g., attached to the
words), so that you are left with just the words.

34) Set a file to be read-only with the chmod (from change mode) command.
Interpret the file permissions displayed by the ls -l command.

35) Delete one or more directories with the rmdir (from remove directory)
command. See what happens if the directory is not empty. Experiment
(carefully!) with the rm -r command to delete a directory and its content.

36) Experiment with redirecting command output (e.g., ls -l >file1). Try ">> "
instead of " >" with an existing text file as the output.

37) See whether upper-case versions of any of these commands work as well as the
lower-case versions.

38) Use the who command to see users logged into the system.

39) Pipe the output of the who command to the sort command

40) Search for your login name in whofile using the grep command.

Session 5

41) Compare two text files with the diff command.

42) Count lines, words, and characters in a file with the wc command.

43) Display your current environment variables with the following command:
set or env.

44) Concatenate all files in a directory redirected to /dev/null and redirecting
standard error to “errorFile”?

45) Display information on yourself or another user with the finger command.

46) If you wish, experiment with sending and receiving mail using the pine email
program.

47) Delete all the files in the current directory whose name ends in “.bak”.

35

Lab Manual

48) Display lines 10 to 14 of any file which contains 25 lines.

49) Count how many lines contain the word science in a word file science.txt.

50) List the statistics of the largest file (and only the largest file) in the current
directory.

Session 6

51) Kill any process with the help of the PID and run any process at the
background.

52) Select a text file and double space the lines.

53) List all the users from /etc/passwd in the alphabetically sorted order.

54) Create a file with duplicate records and delete duplicate records for that file.

55) Use the grep command to search the file example1 for occurrences of the string
“water”.

56) Write grep commands to do the following activities:

• To select the lines from a file that have exactly two characters.
• To select the lines from a file that start with the upper case letter.
• To select the lines from a file that end with a period.
• To select the lines in a file that has one or more blank spaces.
• To select the lines in a file and direct them to another file which has

digits
 as one of the characters in that line.

57) Make a sorted wordlist from the file.

58) Try to execute the example shell scripts given in this manual.

59) Write a shell script that searches for a single word pattern recursively in the
current directory and displays the no. of times it occurred.

60) Write a shell script to implement the DISKCOPY command of DOS.

Session 7

61) Write a shell script that accepts a string from the terminal and echo a suitable
message if it doesn’t have at least 5 characters including the other symbols.

62) Write a shell script to echo the string length of the given string as argument.

63) Write a shell script that accepts two directory names as arguments and deletes
those files in the first directory which are similarly named in the second
directly. Note: Contents should also match inside the files.

64) Write a shell script to display the processes running on the system for every 30
seconds, but only for 3 times.

65) Write a shell script that displays the last modification time of any file.

66) Write a shell script to check the spellings of any text document given as an
argument.

67) Write a shell script to encrypt any text file.

68) Combine the above commands in a shell script so that you have a small
program for extracting a wordlist.

69) Write a shell script which reads the contents in a text file and removes all the
blank spaces in them and redirects the output to a file.

70) Write a shell script that changes the name of the files passed as arguments to
lowercase.

36

Unix Lab

Session 8

71) Write a shell script to translate all the characters to lower case in a given text
file.

72) Write a shell script to combine any three text files into a single file (append
them in the order as they appear in the arguments) and display the word count.

73) Write a shell script that, given a file name as the argument will write the even
numbered line to a file with name evenfile and odd numbered lines to a file
called oddfile.

74) Write a shell script which deletes all the even numbered lines in a text file.

75) Write a script called hello which outputs the following:

• your username
• the time and date
• who is logged on
• also output a line of asterices (*********) after each section.

76) Put the command hello into your .login file so that the script is executed every
time that you log on.

77) Write a script that will count the number of files in each of your subdirectories.

78) Write a shell script like a more command. It asks the user name, the name of
the file on command prompt and displays only the 15 lines of the file at a time
on the screen. Further, next 15 lines will be displayed only when the user
presses the enter key / any other key.

79) Write a shell script that counts English language articles (a, an, the) in a given
text file.

80) Write the shell script which will replace each occurrence of character c with the
characters chr in a string s. It should also display the number of replacements.

Session 9

81) Write the shell program unique, which discards all but one of successive
identical lines from standard input and writes the unique lines to standard
output. By default, unique checks the whole line for uniqueness.

For example, assuming the following input:

List 1
List 2
List 2
List 3
List 4
List 4
List 2

unique should produce the following output as follows:
List 1
List 2
List 3
List 4
List 2

82) Rewrite the unique program so that it can optionally accept a file name on the
command line and redirect the output to that file.

83) Write the shell program which produces a report from the output of ls -l in
the following form:

37

Lab Manual

• Only regular files, directories and symbolic links are printed.

• The file type and permissions are removed.

• A / character is appended to each directory name and the word DIR is
 printed at the beginning of the line.

• A @ character is appended to each symbolic link name and the word
 LINK is printed at the beginning of the line.

At the end of the listing, the number of directories, symbolic links, regular files and
the total size of regular files should be reported.
84) Write the shell program which removes all the comments from a simple C

program stored in your current directory. You can assume that the C source
code contains only syntactically correct comments:

• starting with //, ending with a newline

• starting with /*, ending with */ (can be multi-line)

• nesting of comments is not allowed.

Make sure that C source code is not changed.

85) Write a shell program that outputs all integers up to the command line
parameter starting from 1 and also should output the same numbers in the
reverse order.

Session 10

86) Write a shell program to concatenate to two strings given as input and display
the resultant string along with its string length.

87) Write a shell program to find the largest integer among the three integers given
as arguments.

88) Write a shell program to sort a given file which consists of a list of numbers, in
ascending order.

89) Write a shell program to simulate a simple calculator.

90) Write a shell program to count the following in a text file.

• Number of vowels in a given text file.
• Number of blank spaces.
• Number of characters.
• Number of symbols.
• Number of lines

1.10 SUMMARY

UNIX is a popular operating System, which is mostly using the C language, making
it easy to port to different configurations. UNIX programming environment is
unusually rich and productive. It provides features that allow complex programs to be
built from simpler programs. It uses a hierarchical file system that allows easy
maintenance and efficient implementation. It uses a consistent format for files, the
byte stream, making application programs easier to write. It is a multi-user,
multitasking system. Each user can execute several processes simultaneously. It hides
the machine architecture from the user, making it easier to write programs that run on
different hardware implementation. It is highly secured system.

1.11 FURTHER READINGS

38

Unix Lab

1) Behrouz A. Forouzan, Richard F. Gilberg, UNIX and Shell Programming,
Thomson, 2003.

2) Brian W. Kernighan, Rob Pike, The UNIX Programming Environment, PHI,
1996

3) K. Srirengan, Understanding UNIX, PHI, 2002

4) Sumitabha Das, Your UNIX- The Ultimate Guide, TMGH, 2002

5) Sumitabha Das, UNIX Concepts and Applications, Second Edition, TMGH,
2002

1.12 WEBSITE REFERENCES
www.unix.org/

www.unixreview.com/

www.ugu.com/sui/ugu/warp.ugu

unixhelp.ed.ac.uk

www.unix.org/resources.html

www.osnews.com/

www.levenez.com/unix/

cnc.k12.mi.us/websites/bsdtree.html/

www.linux.org/

www.kernel.org/

www.linux.com/

39

http://www.unix.org/
http://www.unixreview.com/
http://www.ugu.com/sui/ugu/warp.ugu
http://www.osnews.com/
http://www.levenez.com/unix/
http://www.scnc.k12.mi.us/websites/bsdtree.html
http://www.linux.org/
http://www.kernel.org/
http://www.linux.com/

	1.4.2 UNIX File System
	Terminal Control Characters
	Login and Authentication
	Information
	File Management
	Display Contents of Files
	Directories
	Devices
	Special Character Handling for C-shell
	Controlling Program Execution for C-shell
	Controlling Program Input/Output for C-shell
	E-mail and communication
	Editors and Formatting Utilities
	Printing
	Interpreted Languages and Data Manipulation Utilities
	Networking/Communications
	Compilers, Interpreters and Programming Tools
	Splitting a file
	Performing Arithmetic
	Comparison Functions
	Using File Name Wildcards in For Loops

	Session 1
	Session 2
	Session 3
	Session 5
	Session 6
	Session 7
	Session 8
	Session 9

